

Total probability & Bayes' Low

DR/ TAMER RAGEH

6) Total probability

S

If the events $H_1, H_2, ..., H_k$ constitute a partition of the sample space S such that $P(H_i) \neq 0$ for i = 1, 2, ..., k, then for any event A of S, If we have an event A that happen only from the union of mutually exclusive events (disjoint) the P(A) is called total probability

Conditions must achieve

$$\sum_{i=1}^{n} P(H_i) = 1$$

total partition

 $P(H_i \cap H_{i+1}) = 0$

no intersection

(mutually exclusive)

 $: P(A / H_1) = \frac{P(A \cap H_1)}{P(H_1)}$ $P(A) = P(A/H_1) * P(H_1) + P(A/H_2) * P(H_2) + P(A/H_3) * P(H_3) + \cdots$

 $P(A) = P(A \cap H_1) + P(A \cap H_1) + P(A \cap H_1) + \cdots$

$$\therefore P(A) = \sum_{i=1}^{n} P(A/H_i) * P(H_i)$$

Example 1.26: the Veen diagram shown that *B* and $B^c = B'$ constitute a partition of the sample space A, find P(A) (*total probability*).

Solution:

 $P(A) = P(A \cap B) + P(A \cap B')$ $\therefore P(A / B) = \frac{P(A \cap B)}{P(B)}$ P(A) = P(A/B) * P(B) + P(A/B') * P(B')= 0.2 * 0.6 + 0.3 * 0.4 = 0.24 **Example 1.27:** In a certain assembly plant, three machines, B_1 , B_2 , and B_3 , make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Consider the following events:

- > D: the product is defective,
- > B_1 : the product is made by machine B_1 ,
- \triangleright B₂: the product is made by machine B₂,
- \triangleright **B**₃: the product is made by machine **B**₃.

 $P(D) = P(B_1)P(D/B_1) + P(B_2)P(D/B_2) + P(B_3)P(D/B_3).$

Referring to the tree diagram, we find that the three branches give the probabilities $P(B_1)P(D/B_1) = (0.3)(0.02) = 0.006$, $P(B_2)P(D/B_2) = (0.45)(0.03) = 0.0135$, $P(B_3)P(D/B_3) = (0.25)(0.02) = 0.005$, and hence

7) Bayes' Theorem

$$P(H_1 / A) = \frac{P(A \cap H_1)}{P(A)}$$

$$\therefore P(A/H_1) = \frac{P(A \cap H_1)}{P(H_1)} \qquad \because P(A) = \sum_{i=1}^n P(A/H_i) * P(H_i)$$

$$\therefore P(H_1 / A) = \frac{P(A/H_1) * P(H_1)}{\sum_{i=1}^n P(A/H_i) * P(H_i)}$$

 $P(A/H_2)=0.1 P(B/H_1)=0.8 P(B/H_2)=0.9$

 $P(A) = P(A/H_1) * P(H_1) + P(A/H_2) * P(H_2)$

= (0.2 * 0.3) + (0.1 * 0.7) = 0.13

 $P(B) = P(B/H_1) * P(H_1) + P(B/H_2) * P(H_2)$

= (0.8 * 0.3) + (0.9 * 0.7) = 0.87

$$P(H_1/A) = \frac{P(A/H_1) * P(H_1)}{P(A)} = \frac{0.2 * 0.3}{0.13} = 0.46$$

Similarly $P(H_2/A)$, $P(H_1/B)$, $P(H_2/B)$.

Exa

A company produces machine components which pass through an

automatic

testing machine. 5% of the components entering the testing machine are defective. However, the machine is not entirely reliable. If a component is defective there is 4% probability that it will not be rejected. If a component is not defective there is 7% probability that it will be rejected.

- •What is the probability that all the components are rejected?
- •What is the probability that the components defective given t
- •What is the probability that the components defective given t

Solution:

Let

D represent a defective component

- G a good component.
- R represent a rejected component

A an accepted component.

a) can be answered directly using a tree diagram.

P(R) = P(R/D) * P(D) + P(R/G) * P(G) = 0.96 * 0.05 + 0.07 * 0.95 = 0.1145b) $P(D/R) = \frac{P(D \cap R)}{P(R)} = \frac{P(R/D) * P(D)}{P(R/D) * P(D) + P(R/G) * P(G)} = \frac{0.96 * 0.05}{0.1145} = 0.419$ c) $P(D/A) = \frac{P(D \cap A)}{P(A)} = \frac{P(A/D) * P(D)}{1 - P(R)} = \frac{0.04 * 0.05}{1 - 0.1145} = 0.0022586$

Assignment (1)

THANK YOU