

Lec: Random Variables

Dr/ Tamer Rageh

Random Variables

A *random variable* is a function or rule that assigns a number to each outcome of an experiment. Basically it is just a symbol that represents the outcome of an experiment.

Two Types of Random Variables

***** Discrete Random Variables

Continuous Random Variables

Discrete Random Variables

A **discrete random variable** X can take a countable number of distinct values like 1, 2, 3, 4,... Usually counts.

Definition (Discrete Random Variable). We say a random variable is a **discrete random variable** if its space is either finite or countable.

Experiment 1: Tossing a coin once.

 $S = \{\text{Head or Tail}\}, \text{ if the random variable is number of heads.}$

The Random Variable X = x, x = 0,1

Example 2.1: A family consisted of 3 children assume the random variable X gives the number of boys. Find the values of random variable and the corresponding probability density function.

Solution:

Sample Space: $S = \{BBB, BBG, BGB, BGG, GBB, GBG, BGG, BBG, BBG,$

GGB, GGG}. Each outcome is equally likely,

if the random variable is number of boys.

The Random Variable X = x, x = 0,1,2,3.

The event that the family has 3 boys $A_3 = \{BBB\}$, The event that the family has 2 boys $A_2 = \{BBG, BGB, GBB\}$, The event that the family has 1 boy $A_1 = \{BGG, GBG, GGB\}$ The event that the family has no boys $A_0 = \{GGG\}$.

$$P(X = 0) = \frac{1}{8}$$
$$P(X = 1) = \frac{3}{8}$$
$$P(X = 2) = \frac{3}{8}$$
$$P(X = 3) = \frac{1}{8}$$

Outcomes	Random Variable
BBB	3
BBG	
BGB	2
GBB	
BGG	
GBG	1
GGB	
GGG	0

The Cumulative Distribution Function

The **cumulative distribution function** F(x) of a discrete random variable *X* with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{X \le x} f(X)$$

Example 2.4: A discrete random variable X has the following probability

distribution:

Find the value of C, find $F(x_i)$ and graph both f(x) and F(x)

Mean and Variance of A discrete Random Variable

Mean (Expected Value)

<u>The mean</u>, <u>expected value</u>, or <u>expectation</u> of a random variable X is written as E(X) or μ_X . The expected value of a discrete random variable is a measure of central location. The expected value has the formula:

$$E(X) = \mu = \sum_{i=1}^{n} X_i P(X_i).$$

Example 2.6:

Let the random variable X of the discrete type have the pdf given by the table:

X	1	2	3	4
P(X)	0.4	0.1	0.3	0.2

$$E(X) = \sum_{i=0}^{n} x_i P(x_i)$$
$$= \left(1 * \frac{4}{10}\right) + \left(2 * \frac{1}{10}\right) + \left(3 * \frac{3}{10}\right) + \left(4 * \frac{2}{10}\right) = 2.3.$$

Example 2.7: A player tosses a fair die. If a prime number occurs he wins that number of dollars, but if a non-prime number occurs he loses that number of dollars.is this game fair to the player. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

Solution:

The possible outcomes of the game with their respective probabilities are as follows:

X	-6	-4	-1	2	3	5
P(x)	1/6	1/6	1/6	1/6	1/6	1/6

O/P	R.V	P(x)
1	-1	1/6
2	2	1/6
3	3	1/6
4	-4	1/6
5	5	1/6
6	-6	1/6

$$E(X) = \sum_{i=0}^{n} x_i P(x_i) = \left(-6 * \frac{1}{6}\right) + \left(-4 * \frac{1}{6}\right) + \left(-1 * \frac{1}{6}\right) + \left(2 * \frac{1}{6}\right) + \left(3 * \frac{1}{6}\right) + \left(5 * \frac{1}{6}\right) = -\frac{1}{6}$$

Thus the game is unfavorable to the player since the expected value is negative.

Variance:

The variance and associated standard deviation are used to measure the variability of the random variable. The formula for the variance is

$$Var(X) = \sigma^2 = \sum_{i=1}^n (X_i - E(X))^2 P(X_i).$$

If X is a random variable with mean μ , then the variance of X, denoted by Var(X), is defined by:

$$Var(X) = E[(X - \mu)^2]$$

An alternative formula for Var(X) can be derived as follows:

$$Var(X) = E[(X - \mu)^{2}]$$

= $E[X^{2} - 2\mu X + \mu^{2}]$
= $E[X^{2}] - E[2\mu X] + E[\mu^{2}]$
= $E[X^{2}] - 2\mu E[X] + \mu^{2}$
= $E[X^{2}] - 2\mu^{2} + \mu^{2}$

 $= E[X^2] - \mu^2$

Standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values. A low standard deviation indicates that the data points tend to be close to the mean of the set, while a high standard deviation indicates that the data points are spread out over a wider range of values.

Standard Deviation Formula: $\sigma = \sqrt{\sigma^2}$. **Example 2.8:** A random number generator produces sequences of independent digits, each of which is as likely to be any digit from 0 to 9 as any other. If X denotes any single digit, find E(X), Var(X) and σ .

Solution:

n

X	0	1	2	3	4	5	6	7	8	9
P(X=x)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

$$E(X) = \sum_{i=0}^{\infty} x_i P(x_i)$$

= $((0 * 0.1) + (1 * 0.1) + (2 * 0.1) + (3 * 0.1) + (4 * 0.1) + (5 * 0.1)$
+ $(6 * 0.1) + (7 * 0.1) + (8 * 0.1) + (9 * 0.1)) = 4.5$

Var(X)	Xi	P(X _i)	$X_i P(X_i)$	$X^{2}_{i}P(X_{i})$
$= E[X^2] - (E[X])^2$	0	0.1	0	0
$= 28.5 - (4.5)^2$	1	0.1	0.1	0.1
= 8.25.	2	0.1	0.2	0.4
	3	0.1	0.3	0.9
	4	0.1	0.4	1.6
	5	0.1	0.5	2.5
$\sigma = \sqrt{\sigma^2}$	6	0.1	0.6	3.6
$=\sqrt{8.25}=2.87$	7	0.1	0.7	4.9
	8	0.1	0.8	6.4
	9	0.1	0.9	8.1
			E(X)=4.5	$E(X^2)=28.5$

Example 2.9: A discrete random variable X has the following probability distribution:

X	1	2	3	4	5	6	7
P(X)	С	2 <i>C</i>	2 <i>C</i>	3 <i>C</i>	<i>C</i> ²	$2C^2$	$7C^2 + C$

Find the value of C. Also find the mean of distribution.

Solution:

$$\begin{split} \sum_{i=1}^{n} P(X_i) &= 1 = c + 2c + 2c + 3c + c^2 + 2c^2 + 7c^2 + c \\ &= 10c^2 + 9c - 1 = (10c - 1)(c + 1) = 0 \\ c &= 0.1 \qquad c = -1 \qquad rejected \\ E(X) &= \mu = \sum_{i=1}^{n} X_i P(X_i) \\ &= (1 * 0.1) + (2 * 0.2) + (3 * 0.2) + (4 * 0.3) + (5 * 0.01) + (6 * 0.02) \\ &+ (7 * 0.17) = 3.66 \,. \end{split}$$

THANK YOU