

Lec: Binomial & Poisson Distribution

Dr/ Tamer Rageh

The Binomial Distribution

The requirements for using the binomial distribution are as follows:

- > The outcome is determined completely by **chance**.
- > There are only **two** possible outcomes.
- All trials have the same probability for a particular outcome in a single trial. That is, the probability in a subsequent trial is independent of the outcome of a previous trial. Let this constant probability for a single trial be p.
- \succ The number of trials, **n**, must be **fixed**, regardless of the outcome of each trial.

IF the random variable X has Binomial distribution, then we write P(X)= b(X;n,p):

$$P(X = x) = {n \choose x} p^{x} q^{(n-x)}$$
$$x = 0, 1, 2, \dots, n$$

n – Number of trials;
x – Number of successes;
p – Probability of a success in one trial
q – probability of failures q = 1 - P.

Consider the following scenarios:

- > The number of heads/tails in a sequence of coin flips.
- Vote counts for two different candidates in an election.
- ➤ The number of male/female employees in a company.
- ➤ The number of successful sales calls.
- > The number of defective products in a production run.
- The number of days in a month your company's computer network experiences a problem.

1) Mean $\mu = E(X) = np$

- 2) Variance $\sigma^2 = npq$
- 3) Standard Deviation $\sigma = \sqrt{npq}$

Example 2.11: Team A has probability 2/3 of winning whenever it plays. If A plays 4 games, find the probability that A wins

(i) Exactly 2 games (ii) At least 1 game (ii) More than half of the games.

Solution:

Here n = 4, p = 2/3 and q = 1 - p = 1/3(i) Exactly 2 games,

$$P(2 \text{ wins}) = P(X = 2) = b\left(2; 4, \frac{2}{3}\right) = {4 \choose 2}\left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 = 6 * \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^2 = \frac{8}{27}$$

(ii) At least 1 game,

$$P(X \ge 1) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$$

$$= 1 - P(X = 0) = 1 - {\binom{4}{0}} {\binom{2}{3}}^0 {\binom{1}{3}}^4 = 1 - \frac{1}{80} = \frac{80}{81}$$

(iii) More than half of the games.

$$P(X > 2) = P(X = 3) + P(X = 4)$$
$$= {\binom{4}{3}} {\binom{2}{3}}^3 {\binom{1}{3}}^1 + {\binom{4}{4}} {\binom{2}{3}}^4 {\binom{1}{3}}^0 = \frac{80}{243}$$

Example 2.12: Eggs are packed in boxes of 12. The probability that each egg is broken is 0.35 Find the probability that there are less than 3 broken eggs

Solution:

Here n = 12, p = 0.35 and q = 1 - p = 0.65 P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) $= {\binom{12}{0}} 0.35^{0} 0.65^{12} + {\binom{12}{1}} 0.35^{1} 0.65^{11} + {\binom{12}{2}} 0.35^{2} 0.65^{10}$ = 0.0151

2.2.5) The Poisson distribution

This is a discrete distribution that is used in two situations. It is used, when certain conditions are met, as a probability distribution in its own right, and it is also used as a convenient approximation to the binomial distribution in some circumstances. The distribution is named for **S.D. Poisson**, a French mathematician of the nineteenth century.

Consider the following scenarios:

- > The hourly number of customers arriving at a bank
- > The daily number of accidents on a particular stretch of highway
- > The hourly number of accesses to a particular web server
- > The daily number of emergency calls in Dallas
- > The number of typos in a book
- The monthly number of employees who had an absence in a large company
- > Monthly demands for a particular product

Examples of occurrences to which the Poisson distribution often applies include counts from a <u>Geiger counter</u>, <u>collisions of cars</u> at a specific intersection under specific conditions, <u>flaws in a casting</u>, and <u>telephone calls</u> to a particular telephone or office under particular conditions. For the Poisson distribution to apply to these outcomes, they must occur randomly.

$$P(X) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$
 $x = 0, 1, 2, ...$

where λ is the average number of occurrences per base unit, and t is the number of base units inspected

- 1) Mean $\mu = E(X) = \lambda$
- 2) Variance $\sigma^2 = \lambda$

3) Standard Deviation $\sigma = \sqrt{\lambda}$

Example 2.15: new cases of $\underline{H}_5 \underline{N}_1$ Virus in New England are occurring at a rate of about 2 per month, Find the probabilities that: 0,1, 2, 3, 4, 5, 6 cases will occur in New England in the next month

$$P(x = 0) = \frac{2^{0}e^{-2}}{0!} = 0.135$$
$$P(x = 1) = \frac{2^{1}e^{-2}}{1!} = 0.27$$
$$P(x = 2) = \frac{2^{2}e^{-2}}{2!} = 0.27$$
$$P(x = 3) = \frac{2^{3}e^{-2}}{3!} = 0.18$$
$$P(x = 4) = \frac{2^{4}e^{-2}}{4!} = 0.09$$

Example 2.18: The number of meteors(الشهب) found by a radar system in any 30-second interval under specified conditions averages 1.81. Assume the meteors appear randomly and independently.

a) What is the probability that no meteors are found in a one-minute interval?

b) What is the probability of observing at least five but not more than eight meteors in two minutes of observation?

Solution:

a)	λ	time	
	1.81	30 second	$\lambda_{new1} = 3.62/min$
	$\lambda_{new 1}$	60 second	
	P(X=x)	$) = \frac{3.62^{x}e^{-\lambda}}{x!}$	$P(0) = \frac{3.62^0 e^{-3.62}}{0!} = 0.0268$
<i>b</i>)	λ	time	
	1.81	30 second	$\lambda_{new 2} = 7.24/min$
	$\lambda_{new 2}$	120 second	

 $P(5 \le X \le 8) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = 0.545$

Example 2.16: Message arrives at a computer at an average rate of 15 messages / second. The number of messages that arrive in 1 second is known to be a Poisson random variable.

- a) Find the probability that no messages arrive in 1 second
- b) Find the probability that more than 10 messages arrive in a 1- second period **Solution:**

a)
$$P(0) = \frac{\lambda^0 e^{-\lambda}}{0!} = e^{-15} = 3.06 * 10^{-7}$$

b) $P(x > 10) = 1 - P(n \le 9) = 1 - \sum_{i=0}^{9} \frac{15^i e^{-15}}{i!} = 0.8815$

THANK YOU